Functions of Several Cayley-dickson Variables and Manifolds over Them
نویسنده
چکیده
Functions of several octonion variables are investigated and integral representation theorems for them are proved. With the help of them solutions of the˜∂-equations are studied. More generally functions of several Cayley-Dickson variables are considered. Integral formulas of the Martinelli-Bochner, Leray, Koppelman type used in complex analysis here are proved in the new generalized form for functions of Cayley-Dickson variables instead of complex. Moreover, analogs of Stein manifolds over Cayley-Dickson graded algebras are defined and investigated.
منابع مشابه
Constructing zero divisors in the higher dimensional Cayley-Dickson algebras
In this paper we give methods to construct zero divisors in the Cayley–Dickson algebras An=R 2 for n larger than 4. Also we relate the set of zero divisors with suitable Stiefel manifolds.
متن کاملAutomorphism groups of real Cayley-Dickson loops
The Cayley-Dickson loop Cn is the multiplicative closure of basic elements of the algebra constructed by n applications of the Cayley-Dickson doubling process (the first few examples of such algebras are real numbers, complex numbers, quaternions, octonions, sedenions). We will discuss properties of the Cayley-Dickson loops, show that these loops are Hamiltonian and describe the structure of th...
متن کاملThe zero divisors of the Cayley–Dickson algebras over the real numbers
In this paper we describe algebraically the zero divisors of the Cayley Dickson algebras An = R n for n ≥ 4 over the real numbers. Introduction. The Cayley–Dickson algebra An over R is an algebra structure on R2n given inductively by the formulae: Let x = (x1, x2) and y = (y1, y2) in R n = R2 × R2 then xy = (x1y1 − y2x2, y2x1 + x2y1) where x = (x1,−x2). Therefore A0 = R,A1 = C complex numbers, ...
متن کاملMonomorphisms between Cayley-Dickson Algebras
In this paper we study the algebra monomorphisms from Am = R 2m into An = R 2n for 1 ≤ m ≤ n, where An are the Cayley-Dickson algebras. For n ≥ 4, we show that there are many types of monomorphisms and we describe them in terms of the zero divisors in An.
متن کاملCodes over subsets of algebras obtained by the Cayley-Dickson process
In this paper, we define binary block codes over subsets of real algebras obtained by the Cayley-Dickson process and we provide an algorithm to obtain codes with a better rate. This algorithm offers more flexibility than other methods known until now, similar to Lenstra's algorithm on elliptic curves compared with p − 1 Pollard's algorithm.
متن کامل